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An analysis at the cell and laminate level
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Abstract

This paper is a study of light-transmissive photovoltaic systems (LTPV) and the state of the art of their
architectural integration into buildings. Findings indicate a number of innovative solutions that extend the
possibilities for building integration in an architectural and aesthetically pleasing way.
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1. Introduction

As the advantages of renewable energy generation
are becoming more and more attractive to architects as
well as investors, the spread of knowledge about
photovoltaics (PV) and how they can be integrated
technically, economically and aesthetically into the
architectural design of buildings is one of the key
issues to their wide-spread adoption [1]. Light-
transmissive photovoltaics (LTPV) have due to their
material and aesthetic similarity with conventional
building materials like glazing many head start
advantages over opaque PV. They are rather easily
integrable into the planning and construction process
[2], the field of potential application in overhead
glazings and curtain walls is extremely wide [3], and
their impact on saving energy is higher [4].
Advantages of light-transmissive PV are not limited
over opaque PV, but can be found over conventional
glazing as well. Beside the added function of direct
renewable energy generation, they also have a clear
advantage in terms of daylight control [5], sun
protection and reducing heat gains [6]. However,
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many authors see, beside technical and economical
issues, especially the lack in aesthetic quality [7] and
design versatility [2] as a main barrier to the
widespread cultural and social acceptance of PV in the
built environment [8, 9].

This paper explores, based on built architecture, the
design parameters of light-transmissive PV on the
solar cell and laminate level. The scope of this paper
is to show, how architects and engineers together with
the PV industry have done and can influence the
appearance of PV, a knowledge useful for future PV
applications in architecture.

2. Methodology

From a corpus of more than 500 buildings with
light-transmissive PV, that were realised within the
last 20 years, 35 were selected (Tab.l) for further
analysis of the design parameters. These are then
illustrated with computer generated renderings based
on a given spatial geometry (Fig.1: A), to visually
compare the design parameters.

3. PV Technology

Depending on focus, solar cells can be divided into
different groups. A common classification based on
PV technology and manufacturing process is in
crystalline silicon cells and thin-film cells.

crystalline silicon (Tab.1: cs1-27, cstf1+2) The
production of crystalline silicon cells, mono- or
polycrystalline, is split into the manufacturing of
standard wafers (growing or casting of the silicon and



sawing into wafers) and the solar cell process
(texturing, diffusion and metallisation).

For module production, multiple crystalline silicon
cells are electrically connected in linear cell strings,
and a number of side by side cell strings are
encapsulated in a lamination process between front
and back sheets of glass or film for protection and
stability.

thin-film (Tab.1: cstfl1+2, tf1-6) Thin-film PV uses
photoactive materials like amorphous silicon (tf1-4),
copper indium (gallium) selenide (CIS/CIGS; tf5), or
sensitised dyes (DSC; tf6). Nanometre thin layers of
the photoactive electrically
conductive transparent layers are deposited onto a

material and the

glass or film substrate and scribed by lasers into
individual cells. The resulting thin-film sheets of
monolithic  series-interconnected cells are less
restricted in size and generally much larger than

crystalline silicon cells.
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Tab.1.

4. Translucency and transparency

For both technologies, crystalline silicon as well as
thin-film, opaque solar cells account for the lion's
share of production. To achieve translucence there are
two common ways.

Al

light-through' Increasing the distance between
opaque cells, so that light can pass through the
resulting gap, is a relatively easy way for crystalline
silicon cells. However, as views are still obstructed by
the opaque cells, this type of semi-transparent PV is
often called 'light-through'. The shadow plays, or
interplays of light and shadow cast by opaque cells
and transmitted light, are a strong characteristic
(Fig.1: B).

'see-through' A different approach is to make the
solar cell itself light-transmissive. This involves
milling, etching or scribing grooves or holes in the
millimetre or micrometre range, which results in a
much more uniform translucency. As views are less
obstructed this type of semi-transparent PV is often
(Fig.1: C). The method is
commonly applied to thin-film cells, but 'see-through'

called 'see-through'

crystalline cells are available as well.

A A noPV

100% transparency
B crystalline silicon

~50% transparency
C thin-film

~50% transparency

Fig.1. Comparison ofzechnologies.

5. Analysis of crystalline silicon PV

shape Crystalline silicon cells are standardised and
independent of the manufacturer usually round,
pseudo-square with rounded edges, or square (Fig.2).
Round cells and pseudo-square cells are from
monocrystalline silicon. The round shape is a feature
of the ingot and the crystal growth process, for
pseudo-square cells the ingot gets trimmed on four
sides before it is sawn into wafers. Square cells are
mainly polycrystalline cells, where the ingots are cast
in blocks, but are produced from monocrystalline
silicon as well. The diameter of the ingot has to be the
same or near the diagonal length of the square, e.g. a
0 220 mm ingot for a 156 mm square cell.

Round cells were common in the early days of PV
(csl, cs2). However, pseudo-square and square cells
became standard due to more space efficient arranging
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possibilities in opaque applications, with round cells
hardly used any more. Other shapes, like triangular or
hexagonal cells are sometimes proposed in the
literature, e.g. the BIMODE international research
project [10, 11], but built examples were not found.

A . B . | .
Fig.2. Shapes of crystalline silicon cells.

size Crystalline silicon cells have a side length or
diameter of 100, 125 or 150~156 mm, equal to the
industry standard of 4, 5 or 6 inches (Fig.3).

A . B . | .
Fig.3. Sizes of crystalline silicon cells.

special cells Beside the standard cells, some
manufacturers are producing special cells like semi-
transparent crystalline silicon cells (cs3, cs4, cstfl), or
bifacial cells with two photoactive sides (cs5).

colour In the case of standard cells, front and back
side have a different colour, as only the front side has
an anti-reflective coating. An exception are bifacial
cells, with an anti-reflective coating on both sides.
Although the most common colours are dark blueish
or blackish (darker colours trap more light), a limited
range of other colours, like greyish, reddish, greenish,
brownish or yellowish are available as well. The
reason is a thinner anti-reflective coating, and as an
effect of the brighter colour more light is reflected,
which slightly reduces the cell's efficiency.

5.1 Standard patterns for crystalline silicon PV

The most common arrangement of the cells is in a
rectangular grid with equal spacing between the cells.
A comparison of the different cell sizes with an equal
distribution of 50% cells
translucency is shown in Fig.4. This clearly illustrates
that with larger cells much less are required, which
reduces the amount of electrical connections, but
reinforces view obstructions. Round cells are arranged
either in a rectangular grid (Fig.4: D; cs2), or oblique
grid (Fig.4: E; csl).

and 50% gaps for
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546 square cells 100x100 mm
hor/ver 40/35 mm spacing
352 square cells 125x125 mm
hor/ver 45/55 mm spacing
234 square cells 156x156 mm
hor/ver 50/60 mm spacing
690 round cells @100 mm
hor/ver 25/25 mm spacing
688 round cells @100 mm
oblique 30 mm spacing

m g O w >

les]

Fig.4. Square and round crystalline silicon cells.

5.2 Variations for crystalline silicon PV

As the individual cells are interconnected in linear
strings, the easiest variation is to change the spacing
between the strings (Fig.5), a design with either
horizontally (cs6) or vertically (cs7) homogeneous
stripes. Strings can have variable spacing within a
laminate (cs8), as was also suggested by Pellegrino et
al. [12], but for a large facade or skylight it might be
differently  string-spaced

sufficient to combine

laminates (cs9).

Fig.5. Variation of wider cell spacing in one direction.

The more common variation is an equal spacing in
both directions, the distance between the cells being
equal or similar to the distance between the strings, to
achieve a uniform appearance (Fig.6).

Fig.6. Variation of equal cell spacing in two directions.



A very dense spacing is used for shading and to
limit unwanted heat gains (cs10). A wide spacing on
the contrary permits more light to enter the building,
views to the outside and desired heat gains (cs11).

Both functional requirements can be combined in
the same PV laminate (Fig.7), similar to windows in a
wall, like the centre (cs12) and frame (cs13) variation.

Fig.7. Centre/frame variation.

The arrangement of cells side by side is not an
imperative, Fig.8 shows alternating cell position. The
dense pattern is known as chequerboard (cs14), but
with a wide spacing the appearance changes to dotted
spots of cells (cs15).

Fig.8. Chequerboard.

So far all patterns were ideal for rectangular
laminates, but sometimes the architecture requires the
use of non-rectangular laminates.

A radiating strings
B offset strings

C differing string lengths

Fig.9. String variation for non-rectangular panel shapes.

Radiating strings follow the widening of trapezoidal
shapes (Fig.9: A; csl6), offset strings follow the
oblique angles of parallelogram shapes (Fig.9: B;
csl7), and differing string lengths can be used for

basically any shape, best suited for laminates with
curved or inclined edges (Fig.9: C; csl18, cs19). Non-
rectangular shaped laminates are used in canopies
(cs16), sunshades (cs17), or at building corners (cs18).

Partial non-uniform gaps (Fig.10) break with the
strict linear graphic quality (cs20) and overlay the
purely technical photovoltaic imagery with references
from other fields, like this imitation of a stone texture
(cs21), low-resolution
monochrome computer graphics.

reminiscent of  early

Fig.10. Non-uniform gaps.

Traditional patterns can be taken as an inspiration
for PV as well [13], an example being Oriental
patterns (cs22), for which the cells were rotated in
relation to the laminate edges (Fig.11).

Fig.11. Rotation of whole pattern.

Even the grid-like arrangement of the cells within a
string, an assumption that all patterns discussed so far
followed, is questionable and can be manipulated
(Fig.12; cs23).

A

Finally, the strong linear arrangement of the cells in
strings seems to be fixed due to the interconnection
with bus bars front to rear of the next cell.
Scognamiglio et al. [14] suggested to make this more
flexible for alternative PV patterns, but built examples
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were not found. However, the current development of
rear-contact cells may provide an opportunity for an
elegant new interconnection technology [15].

6. Analysis of thin-film PV

translucency To achieve translucency, either the
scribing lines, usually each 1~3 cm, are widened
during the structuring process, or the cells are
patterned with tiny holes in regular intervals. The
former approach results in a homogeneous small scale
zebra effect, the latter yields an even more uniform
transparency. With both methods virtually any
percentage for light-transmission is possible, the built
examples have 5% (tf1), 10% (tf2), and 50% (tf3).

The finer the light-transmitting pattern and the
higher the percentage, the more the thin-film PV will
be similar to the appearance of standard glass. It must
be noted that these percentages refer to the absolute
light-transmission based on the percentage of light-
transmitting holes in relation to opaque areas. But
more important is the perceived visible light-
transmission (VLT) by the human eye: “a measured
VLT of 10% is usually perceived as a VLT of 45%
while a measure of 60% will be perceived as a 82%
VLT” [16], which of course applies to crystalline
silicon PV as well. In the case of DSC, the photoactive
dye itself can be transparent [17].

A one sheet per laminate
B four sheets per laminate

C nine sheets per laminate

Fig.13. Differently sized thin-film sheets.

size As mentioned before, thin-film PV sheets are
generally much larger than the wafer based crystalline
silicon cells and usually in the range of 0.5~0.6 x
0.9~1.2 m?, with maximum dimensions of 2.4 x 2.6 m>
for CIS [18]. However, the available sizes depend on
the specification of each manufacturer's production
line. Similar to crystalline silicon PV, smaller thin-
film sheets can be and often are combined in larger
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size PV laminates (Fig.13; tf2).

colour The front side colour of thin-film sheets
from amorphous silicon tends to be blueish, reddish or
brownish black, whereas CIS/CIGS sheets are blueish,
greenish or greyish black. With DSC a wide range of
colours, even multi-colours are possible, but the red
dye has been the commercially viable one so far. The
back side colour depends on the colour of the back
contact layer. When a transparent conductive layer is
used, front and back are similar in colour as
above. semi-

mentioned Non-transparent, but

transparently patterned layers are for instance silver.

7. Analysis of PV independent variations

Some variations are in principal independent of the
PV technology, like the use of coloured (tf3) or bent
glass (cs24), dummy cells at shaded areas (cs25),
inactive cut cells to fill non-rectangular patterns
(cs26), screen prints behind the PV layer (cs27) or in
front (tf4), media installations (cs13, cs26) and art
(cs20, cs23).

Furthermore, both technologies can be combined in
the same building (cstfl), or even side by side, e.g. at
the same fagade (cstf2).

8. Discussion and outlook

Regardless the technology a variety of different
designs are achievable. However, it becomes clear,
that both technologies provide different opportunities,
for influencing the level of transparency, for
daylighting, and for
connection between inside and outside. Whereas light-

transmissive thin-film PV is a rather unobtrusive

the provision of visible

architectural material very similar to tinted glass,
light-transmissive crystalline silicon PV has a strong
visual impact and requires much more attention during
the design and planning stage. However, severe
restrictions may yield surprising opportunities. The
analysis has shown, that the manufacturer independent
standardisation of crystalline silicon cells provides
architects and engineers in collaboration with PV
companies the tools for experimentation and
innovation. The result is an astonishing variety in key
design parameters, summarised for crystalline silicon
PV in Tab.2, and for thin-film PV in Tab.3.

It is not only the active PV technology itself, that an
architectural light-transmissive PV element can be
made of, but the combination with non-PV elements



(Tab.2, 3: No.9) provides more opportunities and is
independent of the used PV technology. In fact, such

bridge between the different
between PV technology and
architecture, and finally between PV technology and

additions  can
technologies,

widespread social and cultural acceptance. When
several laminates are grouped to cover larger areas,
facades or skylights, the number of combination
possibilities starts to explode.

No. Design parameter Comment
1 PV technology c-si, mc-si
2 Cell shape Fig.2
3 Cell size Fig3,4
4 Cell colour limited range
5a | Cell spacing between strings Fig.5, 6,8
5b | Cell spacing within a string Fig. 6,8, 12
6 String length Fig.9:C, 10-12
7 String position Fig4,7,9
8 String orientation Fig.9:A, 11
9 non-PV elements dummy cells, screen prints,
coloured interlayers, art
10 laminate glass or film, bent glass

Tab.2: Design parameters for crystalline silicon PV laminates

No. Design parameter Comment
1 PV technology a-si, CIS/CIGS, DSC
2 Sheet shape usually rectangular
3 Sheet size manufacturer dependent
4 Sheet colour limited range
5 'see-through' pattern manufacturer dependent
6 'see-through' transparency manufacturer dependent
7 Sheet position variable
8 Sheet orientation variable
9 non-PV elements dummy cells, screen prints,
coloured interlayers, art
10 laminate glass or film, bent glass

Tab.3. Design parameters for thin-film PV laminates

9. Conclusions

The integration of PV technology into glass
laminates has created a modern and
architectural element and building material. In this

superior
paper the design parameters of light-transmissive
photovoltaic systems (LTPV) on the solar cell and
laminate level were analysed, with findings indicating
a number of innovative solutions that extend the
possibilities for building integration of photovoltaic
systems in an architectural and aesthetically pleasing
way.
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